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Nonalcoholic fatty liver diseases (NAFLDs), especially nonal-
coholic steatohepatitis (NASH), have become a major cause of
liver transplant and liver-associated death. However, the patho-
genesis of NASH is still unclear. Currently, there is no FDA-
approved medication to treat this devastating disease. AMP-
activated protein kinase (AMPK) senses energy status and
regulates metabolic processes to maintain homeostasis. The ac-
tivity of AMPK is regulated by the availability of nutrients, such
as carbohydrates, lipids, and amino acids. AMPK activity is
increased by nutrient deprivation and inhibited by overnutri-
tion, inflammation, and hypersecretion of certain anabolic
hormones, such as insulin, during obesity. The repression of he-
patic AMPK activity permits the transition from simple steato-
sis to hepatocellular death; thus, activation might ameliorate
multiple aspects of NASH. Here we review the pathogenesis of
NAFLD and the impact of AMPK activity state on hepatic stea-
tosis, inflammation, liver injury, and fibrosis during the transi-
tion of NAFL toNASH and liver failure.

Nonalcoholic fatty liver disease (NAFLD) is a major compli-
cation of metabolic dysfunction, usually a complication of obe-
sity. NAFLD is an umbrella term describing two stages of
chronic fatty liver diseases: NAFL (nonalcoholic fatty liver) and
NASH (nonalcoholic steatohepatitis). NAFL is characterized
by hepatic steatosis, which can be reversed simply by reduced
caloric intake and exercise. Advanced stage NASH is character-
ized by steatosis with hepatic inflammation and liver injury, of-
ten accompanied by pericellular fibrosis (1). Although NASH is
potentially reversible with diet and exercise, there is no FDA-
approved medication to treat this devastating disease. NASH
frequently progresses to cirrhosis, liver failure, and hepatocellu-
lar carcinoma (HCC) (1–3). The number of individuals with
NAFLD in the United States is expected to increase from 83.1
million in 2015 to 100.9 million in 2030, whereas severe cases
with advanced fibrosis are anticipated to increase by more than
100% (4).
Metabolic syndrome substantially increases the risk of NASH

(5). The occurrence of NAFLD is predominantly associated
with obesity and insulin resistance (6), whereas the incidence of
NASH strongly correlates with central obesity, defined by the
waist/hip ratio (7). Type 2 diabetes represents an independent
pathogenic factor for NASH (8, 9). Most individuals with
NAFLD exhibit dyslipidemia, including hypertriglyceridemia
and hypercholesterolemia (8, 9). Moreover, diverticulosis and

overgrowth of the intestinal microbiome have been identified in
human NASH. NASH-related liver injury and fibrosis might
result from exposure to intestine-derived bacterial products,
such as lipopolysaccharide (10). In addition, NAFLD and NASH
can also result from a diverse array of pharmacotherapies,
including glucocorticoids, tamoxifen, and methotrexate (8, 9)
and long-term antiretroviral therapy for HIV (8).
The precise pathogenic mechanisms that give rise to NASH

remain unclear. The “two-hit model” proposed that ectopic
lipid storage caused by high-fat diet, obesity, and insulin resist-
ance primes hepatocytes for a second insult inducing hepatic
inflammation, liver injury, and fibrogenesis, which in turn pro-
motes the progression from NAFL to NASH and cirrhosis (11,
12). However, it is now clear that multiple pathogenic factors
may act in parallel and synergistically. A “multiple-hit model”
proposes that multiple pathogenic factors act together to induce
NAFLD, including but not limited to insulin resistance, inflam-
mation, lipotoxicity, mitochondrial dysfunction, ER stress, oxi-
dative stress, genetic determinants, and epigenetic factors (12).
AMP-activated protein kinase (AMPK) is an important energy

sensor that regulates metabolic homeostasis. The activity of
AMPK is inhibited by overnutrition during obesity and NAFLD
(13–18). A recent study demonstrated that although the loss of
AMPK activity does not affect hepatic lipid accumulation, it sub-
stantially exacerbates liver injury and hepatic fibrosis (17, 19),
both of which could promote the transition from NASH to cir-
rhosis and HCC. Moreover, reactivation of AMPK improves
symptoms of NASH and therapeutically improves liver injury
(17, 19–21).We review here the regulation of AMPK activity dur-
ing the pathophysiology of NAFL and the roles of the protein ki-
nase in the regulation of NASH development.

AMPK

AMPK is a heterotrimeric serine/threonine kinase com-
prised of three subunits: the a catalytic subunit and the b and g
regulatory subunits. In mammalian cells, the AMPK a subunit
has two isoforms, a1 and a2, encoded by the Prkaa1 and
Prkaa2 genes. The b subunit has b1 and b2 isoforms, encoded
by the Prkab1 and Prkab2 genes. The g subunit includes three
isoforms, g1, g2, and g3, encoded by Prkag1, Prkag2, and
Prkag3. These isoforms have the potential to form 12 different
heterotrimeric complexes (15, 22). Although it remains uncer-
tain whether there are functional differences among these iso-
forms, previous studies have reported different tissue distribu-
tion, regulation, subcellular localization, and functions for
these complexes (23–25). The g2 and g3 isoforms possess*For correspondence: Alan R. Saltiel, asaltiel@health.ucsd.edu.
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unique N-terminal regions that may determine the subcellular
localization of the holoenzyme (26).
The activity of AMPK is regulated by multiple factors

throughmodulation of different subunits. The phosphorylation
of Thr172 within the catalytic domain of the a subunit is
required for the activation of AMPK (27, 28). Three upstream
kinases, liver kinase B1 (LKB1), Ca21/calmodulin-dependent
protein kinase kinase b (CaMKKb), and transforming growth
factor b (TGFb)-activated kinase 1 (TAK1), have been shown
to phosphorylate residue Thr172 (15, 29–34). Moreover, sirtuin
1 (SIRT1), an NAD1-dependent deacetylase, deacetylates
LKB1 to induce its cytosolic localization and thus increases
LKB1-dependent AMPK phosphorylation (35, 36). Another
study showed that the Src family kinase Fyn phosphorylates
LKB1 on Tyr265 and Tyr365 to increase LKB1 cytosolic localiza-
tion and AMPK phosphorylation (37). Upon elevated intracel-
lular Ca21 concentrations, CaMKKb directly phosphorylates
AMPK on Thr172 to increase its activity (29, 30, 33). Although
the mechanism by which TAK1 activates AMPK is still unclear,
several studies have demonstrated that the deletion of TAK1
inhibits starvation, metformin, and AICAR-induced AMPK
activation (31, 34, 38).
As an important energy sensor, AMPK is allosterically acti-

vated by AMP (and ADP to a lesser extent), which binds to the
g subunit, and is repressed by ATP (22, 39). The interaction
between AMP and the g subunit leads to a conformational
change, which protects Thr172 from dephosphorylation (40–
42). Consequently, AMPK senses a high AMP/ATP ratio and
responds by increasing lipid oxidation and mitochondrial bio-
genesis, while reducing lipogenesis and glycogenesis, to
increase intracellular ATP levels (43, 44). In addition to ATP,
phosphocreatine also allosterically inhibits AMPK activity (45).
This finding is consistent with the energy-sensing roles of
AMPK.
AMPK activity is controlled by nutrients, including lipids,

amino acids, and carbohydrates. High-fat diet feeding reduces
AMPK expression and phosphorylation in skeletal muscle,
heart, liver, adipose tissue, aortic endothelium, and hypothala-
mus (18, 46–52). One study suggested that palmitate represses
AMPK activity via the ceramide-dependent activation of pro-
tein phosphatase 2A (PP2A). High-fat diets rich in palmitate in-
hibit AMPK activation in vivo (53). The increase of cardiac lipid
content in Zucker rats and ob/obmice results in the attenuation
of AMPK activation. In cultured cardiomyocytes, fatty acids
up-regulate the expression of Ppm1a (protein phosphatase 2C,
PP2C) to inhibit AMPK, representing a feed-forward effect of
lipid overload to promote energy storage (48). Excess amino
acids have also been demonstrated to suppress AMPK activity
(54, 55). High-protein diet or increased protein intake reduces
AMPK phosphorylation while increasing mTOR phosphoryla-
tion in the hypothalamus and liver. An elevated level of amino
acids, especially leucine, results in a decrease of the AMP/ATP
ratio and thus represses AMPK activation (56, 57). The
AMPKb subunit also contains a conserved glycogen-binding
domain. Glycogen, particularly when in a highly branched state,
inhibits AMPK activity. Branched oligosaccharides with a sin-
gle a1–6 branch allosterically inhibit AMPK phosphorylation
by upstream kinases (58). Furthermore, recent studies demon-

strated that AMPK activity is modulated by glucose levels.
Mechanistically, aldolase senses the glycolytic intermediate
fructose 1,6-bisphosphate, and interacts with v-ATPase on the
lysosomal surface. Without glucose, the absence of fructose
1,6-bisphosphate causes an altered interaction between aldol-
ase and v-ATPase, which leads to the formation of an AMPK
activation complex containing v-ATPase, LKB1, AMPK, AXIN,
and Regulator, thus promoting AMPKa Thr172 phosphoryla-
tion. The presence of glucose disrupts this complex and thus
prevents AMPK activation (59).
Hormones and cytokines also modulate AMPK activity in

physiological or pathological conditions. Insulin markedly
reduces the activity of AMPK, both by increasing glucose
uptake and oxidation and through Akt-mediated phosphoryla-
tion of AMPKa Ser485/491. These phosphorylation events in-
hibit the activity of the enzyme, leading to a conformational
change that exposes the activating Thr172 phosphorylation site
within the kinase domain in the a subunit. As a result, protein
phosphatases, such as PP2A, dephosphorylate Thr172 to deacti-
vate AMPK (60). Proinflammatory cytokines, such as tumor ne-
crosis factor a (TNFa), have also been shown to inhibit AMPK
activity. TNFa induces the expression of Ppm1a (PP2C), which
dephosphorylates Thr172 to deactivate AMPK in skeletal mus-
cle. Consequently, TNFa reduces ACC phosphorylation and
represses fatty acid oxidation (14). Furthermore, TNFa acti-
vates TANK-binding kinase 1 (TBK1) in adipocytes. TBK1
phosphorylates Ser459 and Ser476 residues in the a subunit to
inhibit AMPK activity (18). Thus, AMPK activity is regulated
by energy status, nutrient availability, and hormone/cytokine
levels via various mechanisms, implicating its essential roles in
monitoringmetabolic processes (Fig. 1).

AMPK and NAFLD

Several studies have reported a strong association between
the reduction of AMPK activity and the incidence of metabolic
diseases, including obesity, diabetes, and NAFLD (13). AMPK
activity is inhibited in both obese rodents and human subjects,
mainly attributable to the excess calorie intake and/or lack of
exercise as well as increased inflammation (13–16, 18, 52). He-
patic AMPK activity is substantially attenuated in both NAFL
and NASH (17, 19, 61). Although the roles of AMPK repression
in the pathogenesis of these states remains uncertain, both
pharmacological and genetic activation of AMPK in the liver
exhibit beneficial effects on multiple aspects of NAFLD (17, 20,
62, 63).

Hepatic steatosis

Ectopic lipid accumulation in the liver causes hepatic steato-
sis, which is tightly associated with obesity, insulin resistance,
and diabetes. The amount of hepatic lipid content is predomi-
nantly regulated by four major pathways: de novo lipogenesis,
fatty acid uptake, lipid oxidation, and very low-density lipopro-
tein (VLDL) secretion. De novo lipogenesis converts acetyl-
CoA to fatty acids. The rate of de novo lipogenesis is deter-
mined by two key enzymes: acetyl-CoA carboxylase and fatty
acid synthase (FAS). ACC catalyzes the carboxylation of acetyl-
CoA to generate malonyl-CoA, whereas FAS uses acetyl-CoA
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or malonyl-CoA to synthesize fatty acids. Esterification cata-
lyzed by glycerol-3-phosphate acyltransferases, acylglycerol-3-
phosphate acyltransferases, and diacylglycerol acyltransferases
further converts fatty acids to triglycerides for storage (64). The
increase of de novo lipogenesis and esterification results in he-
patic steatosis. Activation of AMPK inhibits ACC via direct
phosphorylation, reducing overall hepatic lipid storage, as seen
in a phase 2 clinical trial (65). Hepatic lipid accumulation can
also result from fatty acid uptake and subsequent esterification
into triglyceride. Hepatic lipid accumulation increases as a
function of high levels of serum-free fatty acids, which are
determined by the rates of lipolysis in adipose tissue. In this
regard, the ability of AMPK activation to improve systemic in-
sulin sensitivity could indirectly lower lipolysis, thus reducing
free fatty acid levels and fatty acid re-esterification in liver
(66, 67).
De novo lipogenesis and fatty acid uptake are offset by lipid

oxidation, the major catabolic pathway that resolves hepatic
lipid storage. b-Oxidation converts fatty acids to acetyl-CoA.
The rate-limiting step is catalyzed by carnitine palmitoyltrans-
ferases (CPTs), which transport cytosolic acyl-CoA into mito-
chondria. Acetyl-CoA generated from this process can enter
the TCA cycle and then be utilized by mitochondria to produce
ATP or heat. Thus, hepatic triglycerides and fatty acids levels
are also tightly regulated by mitochondrial number and func-
tions. Finally, hepatic lipid content is also regulated by VLDL
packaging and secretion. VLDL is the major circulating vesi-
cle that carries triglycerides from the liver to peripheral tis-
sues (64).
The role of AMPK in hepatic lipid metabolism remains con-

troversial. AMPK deletion does not dramatically affect hepatic
steatosis under obesogenic conditions, although activation of
AMPK by A-769662 reduced hepatic lipid content in high-fat-
diet–induced NAFL (19). Mechanistically, AMPK inhibits de
novo lipogenesis via directly phosphorylating ACC1 Ser79 and
ACC2 Ser212 to repress the activity of the enzyme (19). The in-
hibition of ACC reduces malonyl-CoA, which is an allosteric
inhibitor of CPT1 (68). Therefore, AMPK activation leads to
increased fatty acid oxidation. In addition, sterol regulatory ele-

ment–binding proteins (SREBPs) regulate both triglyceride and
cholesterol synthesis. Maturation and activation of SREBP-1c
induce the expression of Acc and Fasn to increase de novo lipo-
genesis. Activation of SREBP-2 up-regulates the expression of
cholesterol synthesis genes, including HMG-CoA reductase
(Hmgcr), HMG-CoA synthase (Hmgcs), farnesyl diphosphate
synthase (Fdps), and squalene synthase (Sqs) (69). AMPK
directly phosphorylates and inhibits both SREBP-1 and -2 to
reduce de novo lipogenesis and cholesterol synthesis in the liver
(70). In addition, mTOR increases lipogenesis by promoting
transcription and maturation of SREBPs (69). AMPK has been
shown to phosphorylate both TSC2 and Raptor to inhibit
mTORC1 activity (71–73). Consequently, activation of AMPK
inhibits triglyceride and cholesterol synthesis to reduce hepatic
steatosis.
The levels of circulating fatty acids are regulated by lipolysis

in adipose tissue. Free fatty acids generated by adipocytes are
burned through b-oxidation and respiration or secreted into
the circulation. Enhanced lipolysis in adipose tissue increases
circulating fatty acids, which in turn leads to hepatic fatty acid
uptake and promotes steatosis (74, 75). On the other hand,
increased fatty acid oxidation and mitochondrial respiration in
adipose tissue reduces circulating fatty acids and alleviates he-
patic steatosis (76). As a master regulator of metabolism,
AMPK directly phosphorylates and activates peroxisome pro-
liferator-activated receptor g co-activator 1a (PGC1a) to
induce mitochondrial biogenesis, hence increasing mitochon-
drial number (77, 78). In addition, AMPK induces mitophagy
via phosphorylating and activating Unc-51–like autophagy
activating kinase 1 (ULK1) to clear damaged mitochondria and
maintain mitochondrial homeostasis in adipose tissue (79, 80).
Although it is still controversial, several studies indicated that
AMPK directly phosphorylates hormone-sensitive lipase on
Ser565 to inhibit lipolysis in adipocytes (66, 81, 82). In summary,
the activation of AMPK attenuates hepatic steatosis by modu-
lating de novo lipogenesis, fatty acid oxidation, and fatty acid
release from adipose tissue (Fig. 2).

Hepatic inflammation

Inflammation is a hallmark for the progression from NAFL
to NASH. The recruitment of immune cells, including macro-
phages, neutrophils, dendritic cells, and T cells, and the pro-
duction of immune cell–derived cytokines, chemokines, and
eicosanoids lead to hepatic inflammation (83). The increased
number of recruited macrophages is currently used as a histo-
logical marker to determine liver inflammation. During the de-
velopment of NASH, bone marrow–derived macrophages infil-
trate into liver and work together with Kupffer cells to promote
inflammation. Kupffer cells are yok sac–derived, self-renewable
liver-resident macrophages that localize within hepatic sinu-
soids (84). A recent study using single-cell RNA-Seq and line-
age tracing has revealed that during NASH, resident Kupffer
cell partially lose their cell identity and express genes that pro-
mote hepatocyte death. Meanwhile, increased bone marrow–
derived macrophages acquire some Kupffer cell features and
further enhance inflammation (85). Under inflammatory con-
ditions during NASH, Kupffer cells can be induced to

Figure 1. The regulation and function of AMPKĂ
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proliferate and differentiate into different subpopulations (86).
Depending on the stimulating signals, both recruited macro-
phages and Kupffer cells undergo differentiation intoM1- orM2-
like macrophages (87). In response to proinflammatory stimuli,
M1-like macrophages produce various cytokines, including
TNFa and IL1b, to induce hepatocellular death and liver injury.
In contrast, upon stimulation from signals inducing M2-like dif-
ferentiation, macrophages secret cytokines like TGFb to activate
hepatic stellate cells (HSCs), and thus promote hepatic fibrosis
(88–90). Therefore, hepatic inflammation plays a central role in
the progression of NAFLD.
Oxidative stress, ER stress, lipotoxicity and mitochondrial

dysfunction are among other pathogenic factors that trigger
inflammation (83). Under conditions of oxidative stress, the
production of reactive oxygen species (ROS) by mitochondria
and NADPH oxidase is substantially up-regulated in the liver
(91). The macrophage is a major source of ROS generated by
NADPH oxidase (92, 93). Danger-associated molecular pat-
terns are known to induce ROS formation in macrophages (94).
ROS activates the NOD–, LRR–, and pyrin domain–containing
protein-3 (NLRP3) inflammasome to induce inflammation.
Blockage of the NLRP3 inflammasome attenuates hepatic
inflammation and fibrosis in NASH (95). Oxidative stress pro-
motes lipid peroxidation in the liver. The products of this non-
enzymatic process, such as oxidized phospholipids and 4-
hydroxynonenal, further enhance ROS generation to form a
vicious cycle (96, 97). Neutralization of oxidized phospholipids
prevents mitochondrial damage and protects against amylin
diet–inducedNASH (96). ER stress caused by the accumulation
of unfolded or misfolded protein also promotes the production
of ROS by inducing Ca21 release from the ER and thus inducing
inflammation (98). Dietary factors, such as fructose, free fatty
acids, and cholesterol, are external pathogenic factors trigger-
ing inflammation. Fructose is known to induce proinflamma-
tory gene expression and impair b-oxidation in the liver (99–
102). The amylin diet, containing fructose, is widely used to
establish preclinical NASH mouse models. Elevated levels of

saturated fatty acids induce the accumulation of unfolded pro-
tein and ER stress (103). High free cholesterol has been associ-
ated with mitochondrial dysfunction, ER stress, and oxidative
stress (104, 105), all of which contribute to the development of
hepatic inflammation.
Previous studies demonstrated that activation of AMPK

decreases the expression of proinflammatory mediators and
attenuates inflammation in different conditions (106–108).
Liver-specific expression of constitutively active AMPK
reduces the expression of inflammatory genes (20). The chemo-
kine CCL2 (monocyte chemoattractant protein 1, MCP-1) is an
essential player in the recruitment ofmacrophages. The expres-
sion of Ccl2 is induced by the activation of multiple proinflam-
matory signaling pathways, including NFkB- and JNK-medi-
ated pathways (109, 110). AMPK activation by AICAR or by the
expression of constitutively active AMPK largely alleviates pal-
mitate- and TNFa-induced NFkB activation (111). Mechanisti-
cally, AMPK inhibits the nuclear localization of NFkB to
repress the expression of NFkB target genes. Moreover, AMPK
activation increases NAD1 levels, leading to the activation of
SIRT1. SIRT1 deacetylates the NFkB RelA/p65 subunit at
Lys310 to attenuate its transactivation activity (112). Our recent
work found that AMPK phosphorylates ULK1 to induce TBK1
phosphorylation. TBK1, in turn, phosphorylates NFkB-induc-
ing kinase (NIK) to induce its degradation. Consequently,
AMPK activation leads to NIK degradation, resulting in attenu-
ation of the atypical NFkB pathway, which is aberrantly acti-
vated in NAFLD (18, 113). Furthermore, AMPK activation by
A-769662 inhibits IL-1b–induced JNK activation (114). As a
result, AMPK inhibits proinflammatory signaling pathways to
reduce Ccl2 expression (18, 115). In addition, other studies
have found that multiple downstream transcription factors,
including FoxO family proteins and PGC1a, could be involved
in the anti-inflammatory effects of AMPK through regulating
gene expression (108).
In addition to inhibiting proinflammatory signaling, AMPK

may ameliorate inflammation via its anti-oxidative functions.
ROS plays critical roles in the development of hepatic inflam-
mation. AMPK activation attenuates cytosolic ROS production
by down-regulating the expression of NAD(P)H oxidase genes
and reducing mitochondrial ROS through an increase in
PGC1a target gene expression (116–119). Moreover, the acti-
vation of AMPK up-regulates the expression of Sod2 (superox-
ide dismutase 2) and Cat (catalase) to alleviate oxidative stress
(120). The reduction of ROS in turn ameliorates NLRP3 activa-
tion to reduce inflammation (121). Studies have demonstrated
that antioxidants, such as coenzyme Q10 and g-tocotrienol, acti-
vate AMPK and inhibit NLRP3 activation (122, 123). An AMPK-
FOXO3 pathway has been shown to induce the expression of thi-
oredoxin (Trx) (124). Trx binds to the thioredoxin-interacting
protein (Txnip), blocking the interaction between Txnip and
NLRP3. Consequently, AMPK inhibits the activation of NLRP3
inflammasome to prevent hepatic inflammation (108, 125).

Liver injury

In normal liver, hepatocyte apoptosis maintains liver ho-
meostasis, with a strict equilibrium between the loss and

Figure 2. The regulation of hepatic steatosis by AMPK. Activation of
AMPK inhibits de novo lipogenesis while promoting fatty acid oxidation
(b-oxidation) in the livers. In addition, AMPK activation reduces free fatty acid
release from adipose tissue to prevent hepatic steatosis.
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replacement of hepatocytes (110, 126). However, under
pathological conditions, such as viral infection, alcoholic or
nonalcoholic steatohepatitis, and physical injury, extensive
hepatocellular death leads to sustained liver injury, which is
responsible for the enhanced scarring, bridging fibrosis, and
subsequent development of cirrhosis (127–129). Moreover,
hepatocellular death has been recognized as a major con-
tributor to the progression to hepatocellular carcinoma
(130). Therefore, understanding the molecular mechanisms
of hepatocellular death is crucial for the treatment of liver
diseases (131). Currently, hepatocellular death, reflected by
increased serum aminotransferase levels, is the most widely
used and sensitive parameter to screen for and monitor indi-
viduals with liver disease (110, 132). Evaluation of liver
injury drives therapeutic decisions and has prognostic value
for NASH.
Previous studies suggested that multiple types of cell death

may contribute to liver injury in NASH. Although apoptosis
plays a vital role to maintain homeostasis in healthy liver, ele-
vated apoptotic stimuli produces extensive apoptosis, resulting
in liver injury (126, 127). Whereas early findings suggested that
the extensive apoptosis is responsible for NASH-associated
liver damage, recent work suggests that other types of cell death
also contribute to the pathogenesis of NASH. Necroptosis is a
programmed form of inflammatory cell death that is mediated
by the activation of receptor-interacting serine/threonine-pro-
tein kinase 3 (RIPK3). Activated RIPK3 phosphorylates mixed
kinase domain–like protein, which forms pores in the mem-
brane to cause rupture (133, 134). The expression of Ripk3 is
induced in a methionine- and choline-deficient diet (MCD)-
induced NASH mouse model. Knockout of Ripk3 ameliorates
liver injury in these mice (135). Ferroptosis is a type of pro-
grammed cell death dependent on iron, producing lipid peroxi-
dation-mediated cell death in NASH (136). Although it remains
unclear whether pyroptosis, the highly inflammatory form of
programmed cell death, occurs during NASH, the pyroptotic
effector gasdermin D (GSDMD) and its pyroptosis-inducing
fragment GSDMD-N are increased in human NASH. GSDMD
deficiency alleviates lipogenesis and inflammation in MCD-
induced NASHmodel (137).
In the pathogenesis of NASH, these pathogenic factors,

including but not limited to oxidative stress, ER stress, lipotox-
icity, and mitochondrial dysfunction, all activate signaling that
has the capacity to mediate hepatocellular death (138). How-
ever, the crucial underlying mechanism for the regulation of
hepatocellular death and liver injury during the transition from
NAFL to NASH remains unclear. Our recent study found that
normal AMPK activity is required to prevent hepatocellular
death and liver damage. Liver-specific knockout of AMPKa1/
a2 exaggerates liver injury in the choline-deficient high-fat diet
(CD-HFD: 60% fat, 0.1% methionine, L-amino acid, no added
choline)–induced NASH model. During the development of
NASH, caspase-mediated apoptotic signaling pathways are
induced in hepatocytes. The cleavage and activation of caspase-
6 mediate a feed-forward loop to sustain the activation of apo-
ptotic pathways and thus cause hepatocellular death in NASH.
AMPK directly phosphorylates procaspase-6 to inhibit its
cleavage and activation and control cell death. The repression

of AMPK during obesity and NAFLD unleashes caspase-6 to
prime hepatocyte for apoptosis. We further demonstrated that
activation of AMPK byA-769662 therapeutically improves liver
damage even after NASH onset (17).

Hepatic fibrosis

Hepatic fibrosis is a key feature used to determine severity of
NASH. Progressive liver fibrosis frequently results in the pro-
gression from NASH to cirrhosis. Fibrosis is a wound-healing
process that forms excess fibrous connective tissues to replace
normal parenchymal tissues. Normal or mild fibrosis during
injury is necessary for tissue repair. Extensive or chronic fibro-
sis results in the excessive accumulation of collagen and fibers
in the extracellular space (62, 128). Hepatic fibrosis is induced
upon activation of pathogenic pathways, including inflamma-
tion, oxidative stress, and liver injury. Whereas inflammation
induces the pericellular fibrosis typically observed in the early
stages of NASH, scarring after sustained liver injury leads to
progressive fibrosis and subsequent development of cirrhosis
(62, 128). The aggravation of liver damage worsens hepatic fi-
brosis even without changes in hepatic steatosis or inflamma-
tion (17). At advanced stages of hepatic fibrosis, the disruption
of normal liver architecture and functions possibly results in
the liver-associated death (128, 139). Therefore, resolving he-
patic fibrosis and restoring liver functions are the ultimate goals
for NASH treatment (1, 128, 139).
In chronic liver diseases, HSCs are direct mediators of fibro-

sis. Growth factors and inflammatory cytokines produced from
other cell types, such as TGFb from macrophages and platelet-
derived growth factor from endothelial cells, cause overprolif-
eration and transdifferentiation of HSCs. Upon activation,
HSCs transdifferentiate into myofibroblasts, which produce an
excessive amount of extracellular matrix (ECM) proteins (62,
140). Consequently, the accumulation of ECM and fibers dis-
turbs hepatic homeostasis and further promotes the progres-
sion to cirrhosis or even HCC (141).
The activation of AMPK has been demonstrated to improve

liver injury and attenuate hepatic fibrosis in different NASH
models. AMPK activation by A-769662 improves liver injury
and alleviates fibrosis in CD-HFD–induced NASH (17). Low
doses of sorafenib, the first-line treatment for advanced HCC,
activates AMPK and attenuates NASH-associated fibrosis in
experimental mouse and monkey models (21). The injection of
CCl4 induces liver injury and hepatic fibrosis in a lipid-inde-
pendentmanner. In this mousemodel, AMPK activation ameli-
orates fibrogenesis via inhibiting HSC proliferation and down-
regulating the expression of fibrogenic genes, including Nox4,
Tgfb, and Acta2 (142, 143). Mechanistic studies further demon-
strated that CCl4 induces strong oxidative stress and hepatic
accumulation of ROS, which in turn promotes hepatocellular
death and liver fibrosis. The activation of AMPK prevents ROS
production and HSCs activation and thus protects against liver
injury and fibrosis (143–145). Furthermore, the fibrogenic
cytokine TGFb is mainly derived from macrophages and indu-
ces HSC activation during the fibrogenic process. Multiple
studies demonstrated that the induction of AMPK activity
represses TGFb-induced expression of fibrogenic genes in
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HSCs (62, 146–149). Both metformin and AICAR down-regu-
late the expression ofCol1a andActa2 (a-smoothmuscle actin)
in TGFb-treated HSCs (150, 151). AMPK disrupts the interac-
tion between Smad3 and its transcriptional coactivator p300
and induces proteasomal degradation of p300 to reduce fibro-
genic genes expression in HSCs (151). Additionally, the activa-
tion of AMPK by adiponectin induces nitric oxide production
to inhibit HSC proliferation and promote HSC apoptosis (149).
AMPK activation by macrophage migration–inhibitory factor
represses HSC migration and prevents hepatic fibrosis (62,
152). In summary, the activation of AMPK ameliorates hepatic
fibrosis through multiple mechanisms, including reducing
fibrogenic stimuli, preventing HSC activation/proliferation/
migration and inhibiting expression of fibrogenic genes.

Concluding remarks

AMPK is a critical energy sensor that regulates metabolic ho-
meostasis. An increasing body of evidence has demonstrated
that AMPK activity is repressed during metabolic disorders,
including obesity, diabetes, and NAFLD. The inhibition of
AMPK connects lipid dysregulation to inflammation, liver
injury, and fibrosis in NAFLD (Fig. 3). Pharmacological activa-
tion of AMPK improves NASH in both murine and simian
models (21). AMPK activators, such as A-769662, PF-739, or
metformin, ameliorate symptoms of NASH-hepatic steatosis,
inflammation, liver injury, and fibrosis via different mecha-
nisms. However, global activation of AMPK by MK-8722
results in cardiomyocyte hypertrophy, possibly due to the
induction of cardiac glycogen synthesis (153). Further investi-
gation is needed to determine whether cardiomyocyte hyper-
trophy is a general effect for systemic AMPK activation or a
side effect that is specific for MK-8722. In the event that
increasedAMPK activity results in cardiomyocyte hypertrophy,
liver-specific activation of AMPK by liver cell–targeted drug
deliverymight be of great interest for the treatment of NASH.
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